MakeItFrom.com
Menu (ESC)

850.0 Aluminum vs. S35500 Stainless Steel

850.0 aluminum belongs to the aluminum alloys classification, while S35500 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 850.0 aluminum and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 7.9
14
Fatigue Strength, MPa 59
690 to 730
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 100
810 to 910
Tensile Strength: Ultimate (UTS), MPa 140
1330 to 1490
Tensile Strength: Yield (Proof), MPa 76
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 190
870
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 370
1420
Specific Heat Capacity, J/kg-K 850
470
Thermal Conductivity, W/m-K 180
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 14
16
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.5
3.5
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 1160
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.1
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 42
3610 to 4100
Stiffness to Weight: Axial, points 12
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 12
47 to 53
Strength to Weight: Bending, points 19
34 to 37
Thermal Diffusivity, mm2/s 69
4.4
Thermal Shock Resistance, points 6.1
44 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.3 to 93.1
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
15 to 16
Copper (Cu), % 0.7 to 1.3
0
Iron (Fe), % 0 to 0.7
73.2 to 77.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 0.7 to 1.3
4.0 to 5.0
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Residuals, % 0 to 0.3
0