MakeItFrom.com
Menu (ESC)

851.0 Aluminum vs. Nickel 725

851.0 aluminum belongs to the aluminum alloys classification, while nickel 725 belongs to the nickel alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 851.0 aluminum and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.9 to 9.1
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 130 to 140
860

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 630
1340
Melting Onset (Solidus), °C 360
1270
Specific Heat Capacity, J/kg-K 850
440
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 46
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 14
75
Density, g/cm3 3.1
8.5
Embodied Carbon, kg CO2/kg material 8.4
13
Embodied Energy, MJ/kg 160
190
Embodied Water, L/kg 1140
270

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 12 to 13
28
Strength to Weight: Bending, points 19 to 20
24
Thermal Shock Resistance, points 6.1 to 6.3
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.6 to 91.5
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22.5
Copper (Cu), % 0.7 to 1.3
0
Iron (Fe), % 0 to 0.7
2.3 to 15.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0.3 to 0.7
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 2.0 to 3.0
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
1.0 to 1.7
Residuals, % 0 to 0.3
0