MakeItFrom.com
Menu (ESC)

851.0 Aluminum vs. S20910 Stainless Steel

851.0 aluminum belongs to the aluminum alloys classification, while S20910 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 851.0 aluminum and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 3.9 to 9.1
14 to 39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 130 to 140
780 to 940

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 180
1080
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 360
1380
Specific Heat Capacity, J/kg-K 850
480
Thermal Conductivity, W/m-K 180
13
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 14
22
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.4
4.8
Embodied Energy, MJ/kg 160
68
Embodied Water, L/kg 1140
180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 12 to 13
28 to 33
Strength to Weight: Bending, points 19 to 20
24 to 27
Thermal Diffusivity, mm2/s 69
3.6
Thermal Shock Resistance, points 6.1 to 6.3
17 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 86.6 to 91.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 0.7 to 1.3
0
Iron (Fe), % 0 to 0.7
52.1 to 62.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.1
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0.3 to 0.7
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.0 to 3.0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 5.5 to 7.0
0
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.1 to 0.3
Residuals, % 0 to 0.3
0