MakeItFrom.com
Menu (ESC)

A201.0 Aluminum vs. 5657 Aluminum

Both A201.0 aluminum and 5657 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A201.0 aluminum and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 4.7
6.6 to 15
Fatigue Strength, MPa 97
74 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Tensile Strength: Ultimate (UTS), MPa 480
150 to 200
Tensile Strength: Yield (Proof), MPa 420
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 650
660
Melting Onset (Solidus), °C 570
640
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
210
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
54
Electrical Conductivity: Equal Weight (Specific), % IACS 90
180

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.1
8.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
140 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 44
15 to 20
Strength to Weight: Bending, points 45
23 to 28
Thermal Diffusivity, mm2/s 46
84
Thermal Shock Resistance, points 21
6.7 to 8.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.7 to 95.5
98.5 to 99.4
Copper (Cu), % 4.0 to 5.0
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.1
0 to 0.1
Magnesium (Mg), % 0.15 to 0.35
0.6 to 1.0
Manganese (Mn), % 0.2 to 0.4
0 to 0.030
Silicon (Si), % 0 to 0.050
0 to 0.080
Titanium (Ti), % 0.15 to 0.35
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.1
0 to 0.050