MakeItFrom.com
Menu (ESC)

A206.0 Aluminum vs. S39277 Stainless Steel

A206.0 aluminum belongs to the aluminum alloys classification, while S39277 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A206.0 aluminum and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 110
250
Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 4.2 to 10
28
Fatigue Strength, MPa 90 to 180
480
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Shear Strength, MPa 260
600
Tensile Strength: Ultimate (UTS), MPa 390 to 440
930
Tensile Strength: Yield (Proof), MPa 250 to 380
660

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 670
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.0
4.2
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1150
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 37
240
Resilience: Unit (Modulus of Resilience), kJ/m3 440 to 1000
1070
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 36 to 41
33
Strength to Weight: Bending, points 39 to 43
27
Thermal Diffusivity, mm2/s 48
4.2
Thermal Shock Resistance, points 17 to 19
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.9 to 95.7
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 4.2 to 5.0
1.2 to 2.0
Iron (Fe), % 0 to 0.1
56.8 to 64.3
Magnesium (Mg), % 0 to 0.15
0
Manganese (Mn), % 0 to 0.2
0 to 0.8
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.050
6.5 to 8.0
Nitrogen (N), % 0
0.23 to 0.33
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.050
0 to 0.8
Sulfur (S), % 0
0 to 0.0020
Tin (Sn), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.3
0
Tungsten (W), % 0
0.8 to 1.2
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0