MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. ASTM A369 Grade FP92

A242.0 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP92 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
210
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.6
19
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 220
710

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 210
590
Melting Completion (Liquidus), °C 680
1490
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
26
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1130
89

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 52
6.9
Thermal Shock Resistance, points 9.3
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.3 to 93.1
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0.15 to 0.25
8.5 to 9.5
Copper (Cu), % 3.7 to 4.5
0
Iron (Fe), % 0 to 0.8
85.8 to 89.1
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 1.8 to 2.3
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.070 to 0.2
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0