MakeItFrom.com
Menu (ESC)

A242.0 Aluminum vs. S44735 Stainless Steel

A242.0 aluminum belongs to the aluminum alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A242.0 aluminum and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
220
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 1.6
21
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
82
Tensile Strength: Ultimate (UTS), MPa 220
630

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 680
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
21
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 1130
180

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
26
Strength to Weight: Axial, points 20
23
Strength to Weight: Bending, points 26
21
Thermal Shock Resistance, points 9.3
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 89.3 to 93.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.15 to 0.25
28 to 30
Copper (Cu), % 3.7 to 4.5
0
Iron (Fe), % 0 to 0.8
60.7 to 68.4
Magnesium (Mg), % 1.2 to 1.7
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 1.8 to 2.3
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.070 to 0.2
0.2 to 1.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0