MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. Nickel 201

A357.0 aluminum belongs to the aluminum alloys classification, while nickel 201 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is nickel 201.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
180
Elongation at Break, % 3.7
4.5 to 45
Fatigue Strength, MPa 100
42 to 210
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
70
Shear Strength, MPa 240
270 to 380
Tensile Strength: Ultimate (UTS), MPa 350
390 to 660
Tensile Strength: Yield (Proof), MPa 270
80 to 510

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 560
1440
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 160
78
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
19
Electrical Conductivity: Equal Weight (Specific), % IACS 140
19

Otherwise Unclassified Properties

Base Metal Price, % relative 12
65
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 8.2
11
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
25 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 520
17 to 720
Stiffness to Weight: Axial, points 15
11
Stiffness to Weight: Bending, points 53
21
Strength to Weight: Axial, points 38
12 to 20
Strength to Weight: Bending, points 43
13 to 19
Thermal Diffusivity, mm2/s 68
20
Thermal Shock Resistance, points 17
11 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.8 to 93
0
Beryllium (Be), % 0.040 to 0.070
0
Carbon (C), % 0
0 to 0.020
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.2
0 to 0.4
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0 to 0.35
Nickel (Ni), % 0
99 to 100
Silicon (Si), % 6.5 to 7.5
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0