MakeItFrom.com
Menu (ESC)

A357.0 Aluminum vs. C92700 Bronze

A357.0 aluminum belongs to the aluminum alloys classification, while C92700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A357.0 aluminum and the bottom bar is C92700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.7
9.1
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
40
Tensile Strength: Ultimate (UTS), MPa 350
290
Tensile Strength: Yield (Proof), MPa 270
150

Thermal Properties

Latent Heat of Fusion, J/g 500
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
980
Melting Onset (Solidus), °C 560
840
Specific Heat Capacity, J/kg-K 900
370
Thermal Conductivity, W/m-K 160
47
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
11
Electrical Conductivity: Equal Weight (Specific), % IACS 140
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
35
Density, g/cm3 2.6
8.7
Embodied Carbon, kg CO2/kg material 8.2
3.6
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1110
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
22
Resilience: Unit (Modulus of Resilience), kJ/m3 520
110
Stiffness to Weight: Axial, points 15
6.8
Stiffness to Weight: Bending, points 53
18
Strength to Weight: Axial, points 38
9.1
Strength to Weight: Bending, points 43
11
Thermal Diffusivity, mm2/s 68
15
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 90.8 to 93
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Beryllium (Be), % 0.040 to 0.070
0
Copper (Cu), % 0 to 0.2
86 to 89
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0
1.0 to 2.5
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 6.5 to 7.5
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0.040 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.7
Residuals, % 0
0 to 0.7