MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. 6012 Aluminum

Both A360.0 aluminum and 6012 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.6 to 5.0
9.1 to 11
Fatigue Strength, MPa 82 to 150
55 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 180
130 to 190
Tensile Strength: Ultimate (UTS), MPa 180 to 320
220 to 320
Tensile Strength: Yield (Proof), MPa 170 to 260
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 530
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 680
640
Melting Onset (Solidus), °C 590
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 110
160
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
45
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
94 to 480
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
48
Strength to Weight: Axial, points 19 to 34
22 to 32
Strength to Weight: Bending, points 27 to 39
29 to 37
Thermal Diffusivity, mm2/s 48
62
Thermal Shock Resistance, points 8.5 to 15
10 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 90.6
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.6
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 0.4 to 0.6
0.6 to 1.2
Manganese (Mn), % 0 to 0.35
0.4 to 1.0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 9.0 to 10
0.6 to 1.4
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.3
Residuals, % 0 to 0.25
0 to 0.15

Comparable Variants