MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. 6151 Aluminum

Both A360.0 aluminum and 6151 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is 6151 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.6 to 5.0
1.1 to 5.7
Fatigue Strength, MPa 82 to 150
80 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 180
190 to 200
Tensile Strength: Ultimate (UTS), MPa 180 to 320
330 to 340
Tensile Strength: Yield (Proof), MPa 170 to 260
270 to 280

Thermal Properties

Latent Heat of Fusion, J/g 530
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 680
650
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 110
170
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
45
Electrical Conductivity: Equal Weight (Specific), % IACS 100
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
3.5 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
520 to 580
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 19 to 34
34
Strength to Weight: Bending, points 27 to 39
39
Thermal Diffusivity, mm2/s 48
70
Thermal Shock Resistance, points 8.5 to 15
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 90.6
95.6 to 98.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 0 to 0.6
0 to 0.35
Iron (Fe), % 0 to 1.3
0 to 1.0
Magnesium (Mg), % 0.4 to 0.6
0.45 to 0.8
Manganese (Mn), % 0 to 0.35
0 to 0.2
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 9.0 to 10
0.6 to 1.2
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.5
0 to 0.25
Residuals, % 0 to 0.25
0 to 0.15

Comparable Variants