MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. ASTM A182 Grade F92

A360.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F92 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
240
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 5.0
22
Fatigue Strength, MPa 82 to 150
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 180
440
Tensile Strength: Ultimate (UTS), MPa 180 to 320
690
Tensile Strength: Yield (Proof), MPa 170 to 260
500

Thermal Properties

Latent Heat of Fusion, J/g 530
260
Maximum Temperature: Mechanical, °C 170
590
Melting Completion (Liquidus), °C 680
1490
Melting Onset (Solidus), °C 590
1450
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1070
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
140
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
650
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 19 to 34
24
Strength to Weight: Bending, points 27 to 39
22
Thermal Diffusivity, mm2/s 48
6.9
Thermal Shock Resistance, points 8.5 to 15
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 90.6
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 1.3
85.8 to 89.1
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0 to 0.5
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 10
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.25
0