MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. EN 1.6570 Steel

A360.0 aluminum belongs to the aluminum alloys classification, while EN 1.6570 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is EN 1.6570 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
270 to 340
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 5.0
11 to 17
Fatigue Strength, MPa 82 to 150
500 to 660
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 180 to 320
910 to 1130
Tensile Strength: Yield (Proof), MPa 170 to 260
760 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 680
1460
Melting Onset (Solidus), °C 590
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.9
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1070
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
1520 to 3010
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 19 to 34
32 to 40
Strength to Weight: Bending, points 27 to 39
27 to 31
Thermal Diffusivity, mm2/s 48
11
Thermal Shock Resistance, points 8.5 to 15
27 to 33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 90.6
0
Carbon (C), % 0
0.28 to 0.35
Chromium (Cr), % 0
1.0 to 1.4
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 0 to 1.3
94 to 96.2
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.5
1.6 to 2.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 9.0 to 10
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0

Comparable Variants