MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. EN AC-48100 Aluminum

Both A360.0 aluminum and EN AC-48100 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
100 to 140
Elastic (Young's, Tensile) Modulus, GPa 72
76
Elongation at Break, % 1.6 to 5.0
1.1
Fatigue Strength, MPa 82 to 150
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
29
Tensile Strength: Ultimate (UTS), MPa 180 to 320
240 to 330
Tensile Strength: Yield (Proof), MPa 170 to 260
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 530
640
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 680
580
Melting Onset (Solidus), °C 590
470
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
27
Electrical Conductivity: Equal Weight (Specific), % IACS 100
87

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 7.8
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1070
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
250 to 580
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
51
Strength to Weight: Axial, points 19 to 34
24 to 33
Strength to Weight: Bending, points 27 to 39
31 to 38
Thermal Diffusivity, mm2/s 48
55
Thermal Shock Resistance, points 8.5 to 15
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 90.6
72.1 to 79.8
Copper (Cu), % 0 to 0.6
4.0 to 5.0
Iron (Fe), % 0 to 1.3
0 to 1.3
Magnesium (Mg), % 0.4 to 0.6
0.25 to 0.65
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 0.3
Silicon (Si), % 9.0 to 10
16 to 18
Tin (Sn), % 0 to 0.15
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 1.5
Residuals, % 0 to 0.25
0 to 0.25

Comparable Variants