MakeItFrom.com
Menu (ESC)

A360.0 Aluminum vs. C17500 Copper

A360.0 aluminum belongs to the aluminum alloys classification, while C17500 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A360.0 aluminum and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 1.6 to 5.0
6.0 to 30
Fatigue Strength, MPa 82 to 150
170 to 310
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
45
Shear Strength, MPa 180
200 to 520
Tensile Strength: Ultimate (UTS), MPa 180 to 320
310 to 860
Tensile Strength: Yield (Proof), MPa 170 to 260
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 530
220
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 680
1060
Melting Onset (Solidus), °C 590
1020
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 110
200
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 100
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 7.8
4.7
Embodied Energy, MJ/kg 150
73
Embodied Water, L/kg 1070
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6 to 13
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 470
120 to 2390
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 53
18
Strength to Weight: Axial, points 19 to 34
9.7 to 27
Strength to Weight: Bending, points 27 to 39
11 to 23
Thermal Diffusivity, mm2/s 48
59
Thermal Shock Resistance, points 8.5 to 15
11 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 90.6
0 to 0.2
Beryllium (Be), % 0
0.4 to 0.7
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 0 to 0.6
95.6 to 97.2
Iron (Fe), % 0 to 1.3
0 to 0.1
Magnesium (Mg), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 9.0 to 10
0 to 0.2
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0 to 0.5