MakeItFrom.com
Menu (ESC)

A360.0-T6 Aluminum vs. EN AC-43100-T6

Both A360.0-T6 aluminum and EN AC-43100-T6 are aluminum alloys. Both are furnished in the T6 temper. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A360.0-T6 aluminum and the bottom bar is EN AC-43100-T6.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
94
Elastic (Young's, Tensile) Modulus, GPa 72
71
Elongation at Break, % 1.6
1.1
Fatigue Strength, MPa 82
71
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 310
270
Tensile Strength: Yield (Proof), MPa 260
230

Thermal Properties

Latent Heat of Fusion, J/g 530
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 680
600
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 110
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
37
Electrical Conductivity: Equal Weight (Specific), % IACS 100
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 7.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1070
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.6
2.9
Resilience: Unit (Modulus of Resilience), kJ/m3 470
360
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
54
Strength to Weight: Axial, points 33
29
Strength to Weight: Bending, points 39
36
Thermal Diffusivity, mm2/s 48
60
Thermal Shock Resistance, points 15
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 85.8 to 90.6
86.9 to 90.8
Copper (Cu), % 0 to 0.6
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0.4 to 0.6
0.2 to 0.45
Manganese (Mn), % 0 to 0.35
0 to 0.45
Nickel (Ni), % 0 to 0.5
0 to 0.050
Silicon (Si), % 9.0 to 10
9.0 to 11
Tin (Sn), % 0 to 0.15
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0 to 0.25
0 to 0.15