MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. 6101A Aluminum

Both A380.0 aluminum and 6101A aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is 6101A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 3.3
11
Fatigue Strength, MPa 140
80
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 190
130
Tensile Strength: Ultimate (UTS), MPa 290
220
Tensile Strength: Yield (Proof), MPa 160
190

Thermal Properties

Latent Heat of Fusion, J/g 510
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 550
630
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 96
200
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
55
Electrical Conductivity: Equal Weight (Specific), % IACS 78
180

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 7.5
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
24
Resilience: Unit (Modulus of Resilience), kJ/m3 180
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
51
Strength to Weight: Axial, points 28
23
Strength to Weight: Bending, points 34
30
Thermal Diffusivity, mm2/s 38
84
Thermal Shock Resistance, points 13
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.3 to 89.5
97.9 to 99.3
Copper (Cu), % 3.0 to 4.0
0 to 0.050
Iron (Fe), % 0 to 1.3
0 to 0.4
Magnesium (Mg), % 0 to 0.1
0.4 to 0.9
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 7.5 to 9.5
0.3 to 0.7
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0 to 0.1