MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. ASTM A387 Grade 91 Class 2

A380.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 91 class 2 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.3
20
Fatigue Strength, MPa 140
330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 190
420
Tensile Strength: Ultimate (UTS), MPa 290
670
Tensile Strength: Yield (Proof), MPa 160
470

Thermal Properties

Latent Heat of Fusion, J/g 510
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 96
26
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 78
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 7.5
2.6
Embodied Energy, MJ/kg 140
37
Embodied Water, L/kg 1040
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.3
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 34
22
Thermal Diffusivity, mm2/s 38
6.9
Thermal Shock Resistance, points 13
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.3 to 89.5
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.3
87.3 to 90.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0 to 0.5
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 7.5 to 9.5
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 3.0
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0