MakeItFrom.com
Menu (ESC)

A380.0 Aluminum vs. AWS E385

A380.0 aluminum belongs to the aluminum alloys classification, while AWS E385 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A380.0 aluminum and the bottom bar is AWS E385.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.3
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 290
580

Thermal Properties

Latent Heat of Fusion, J/g 510
300
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 96
14
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 78
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 7.5
5.8
Embodied Energy, MJ/kg 140
79
Embodied Water, L/kg 1040
200

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 28
20
Strength to Weight: Bending, points 34
19
Thermal Diffusivity, mm2/s 38
3.6
Thermal Shock Resistance, points 13
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 80.3 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 3.0 to 4.0
1.2 to 2.0
Iron (Fe), % 0 to 1.3
41.8 to 50.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
1.0 to 2.5
Molybdenum (Mo), % 0
4.2 to 5.2
Nickel (Ni), % 0 to 0.5
24 to 26
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 9.5
0 to 0.9
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 3.0
0
Residuals, % 0 to 0.5
0