MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. 332.0 Aluminum

Both A384.0 aluminum and 332.0 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
73
Elongation at Break, % 2.5
1.0
Fatigue Strength, MPa 140
90
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
27
Shear Strength, MPa 200
190
Tensile Strength: Ultimate (UTS), MPa 330
250
Tensile Strength: Yield (Proof), MPa 170
190

Thermal Properties

Latent Heat of Fusion, J/g 550
530
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
580
Melting Onset (Solidus), °C 510
530
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 96
100
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
26
Electrical Conductivity: Equal Weight (Specific), % IACS 73
84

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 7.5
7.8
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1010
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 180
250
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 32
24
Strength to Weight: Bending, points 38
31
Thermal Diffusivity, mm2/s 39
42
Thermal Shock Resistance, points 15
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 79.3 to 86.5
80.1 to 89
Copper (Cu), % 3.0 to 4.5
2.0 to 4.0
Iron (Fe), % 0 to 1.3
0 to 1.2
Magnesium (Mg), % 0 to 0.1
0.5 to 1.5
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 0.5
Silicon (Si), % 10.5 to 12
8.5 to 10.5
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 1.0
0 to 1.0
Residuals, % 0 to 0.5
0 to 0.5