MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. A384.0 Aluminum

Both A390.0 aluminum and A384.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
74
Elongation at Break, % 0.87 to 0.91
2.5
Fatigue Strength, MPa 70 to 100
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
28
Tensile Strength: Ultimate (UTS), MPa 190 to 290
330
Tensile Strength: Yield (Proof), MPa 190 to 290
170

Thermal Properties

Latent Heat of Fusion, J/g 640
550
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 580
610
Melting Onset (Solidus), °C 480
510
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 130
96
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
23
Electrical Conductivity: Equal Weight (Specific), % IACS 67
73

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 7.3
7.5
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 950
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
180
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
50
Strength to Weight: Axial, points 19 to 30
32
Strength to Weight: Bending, points 27 to 36
38
Thermal Diffusivity, mm2/s 56
39
Thermal Shock Resistance, points 9.0 to 14
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 75.3 to 79.6
79.3 to 86.5
Copper (Cu), % 4.0 to 5.0
3.0 to 4.5
Iron (Fe), % 0 to 0.5
0 to 1.3
Magnesium (Mg), % 0.45 to 0.65
0 to 0.1
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 16 to 18
10.5 to 12
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 1.0
Residuals, % 0 to 0.2
0 to 0.5