MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. EN 1.3543 Stainless Steel

A390.0 aluminum belongs to the aluminum alloys classification, while EN 1.3543 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is EN 1.3543 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
220
Elastic (Young's, Tensile) Modulus, GPa 75
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Tensile Strength: Ultimate (UTS), MPa 190 to 290
730

Thermal Properties

Latent Heat of Fusion, J/g 640
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 580
1430
Melting Onset (Solidus), °C 480
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 67
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.0
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 7.3
2.3
Embodied Energy, MJ/kg 140
32
Embodied Water, L/kg 950
120

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 19 to 30
27
Strength to Weight: Bending, points 27 to 36
24
Thermal Diffusivity, mm2/s 56
6.1
Thermal Shock Resistance, points 9.0 to 14
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 75.3 to 79.6
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.5
79.1 to 83.6
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0