MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. EN 1.3553 Steel

A390.0 aluminum belongs to the aluminum alloys classification, while EN 1.3553 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is EN 1.3553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
220
Elastic (Young's, Tensile) Modulus, GPa 75
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 190 to 290
720

Thermal Properties

Latent Heat of Fusion, J/g 640
260
Maximum Temperature: Mechanical, °C 170
540
Melting Completion (Liquidus), °C 580
1620
Melting Onset (Solidus), °C 480
1570
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
10
Electrical Conductivity: Equal Weight (Specific), % IACS 67
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 7.3
8.5
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 950
96

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
23
Strength to Weight: Axial, points 19 to 30
24
Strength to Weight: Bending, points 27 to 36
21
Thermal Diffusivity, mm2/s 56
6.4
Thermal Shock Resistance, points 9.0 to 14
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 75.3 to 79.6
0
Carbon (C), % 0
0.78 to 0.86
Chromium (Cr), % 0
3.9 to 4.3
Copper (Cu), % 4.0 to 5.0
0 to 0.3
Iron (Fe), % 0 to 0.5
80.7 to 83.7
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 0.4
Molybdenum (Mo), % 0
4.7 to 5.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 16 to 18
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
6.0 to 6.7
Vanadium (V), % 0
1.7 to 2.0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0