MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. Nickel 890

A390.0 aluminum belongs to the aluminum alloys classification, while nickel 890 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.87 to 0.91
39
Fatigue Strength, MPa 70 to 100
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Tensile Strength: Ultimate (UTS), MPa 190 to 290
590
Tensile Strength: Yield (Proof), MPa 190 to 290
230

Thermal Properties

Latent Heat of Fusion, J/g 640
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 580
1390
Melting Onset (Solidus), °C 480
1340
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 20
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
47
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 7.3
8.2
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 950
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
180
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 19 to 30
20
Strength to Weight: Bending, points 27 to 36
19
Thermal Shock Resistance, points 9.0 to 14
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 75.3 to 79.6
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 4.0 to 5.0
0 to 0.75
Iron (Fe), % 0 to 0.5
17.3 to 33.9
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 16 to 18
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0 to 0.2
0.15 to 0.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0