MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. 3102 Aluminum

Both A413.0 aluminum and 3102 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is 3102 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 3.5
23 to 28
Fatigue Strength, MPa 130
31 to 34
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 170
58 to 65
Tensile Strength: Ultimate (UTS), MPa 240
92 to 100
Tensile Strength: Yield (Proof), MPa 130
28 to 34

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
230
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
56
Electrical Conductivity: Equal Weight (Specific), % IACS 110
190

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 120
5.8 to 8.3
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 25
9.4 to 10
Strength to Weight: Bending, points 33
17 to 18
Thermal Diffusivity, mm2/s 52
92
Thermal Shock Resistance, points 11
4.1 to 4.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.9 to 89
97.9 to 99.95
Copper (Cu), % 0 to 1.0
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.050 to 0.4
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0 to 0.4
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.5
0 to 0.3
Residuals, % 0 to 0.25
0 to 0.15