MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. 5056 Aluminum

Both A413.0 aluminum and 5056 aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
67
Elongation at Break, % 3.5
4.9 to 31
Fatigue Strength, MPa 130
140 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Shear Strength, MPa 170
170 to 240
Tensile Strength: Ultimate (UTS), MPa 240
290 to 460
Tensile Strength: Yield (Proof), MPa 130
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
29
Electrical Conductivity: Equal Weight (Specific), % IACS 110
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
9.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 120
170 to 1220
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
51
Strength to Weight: Axial, points 25
30 to 48
Strength to Weight: Bending, points 33
36 to 50
Thermal Diffusivity, mm2/s 52
53
Thermal Shock Resistance, points 11
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.9 to 89
93 to 95.4
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 0 to 1.0
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 0.4
Magnesium (Mg), % 0 to 0.1
4.5 to 5.6
Manganese (Mn), % 0 to 0.35
0.050 to 0.2
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0 to 0.3
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0 to 0.25
0 to 0.15