MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. 6110 Aluminum

Both A413.0 aluminum and 6110 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is 6110 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
70
Elongation at Break, % 3.5
2.2
Fatigue Strength, MPa 130
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 170
290
Tensile Strength: Ultimate (UTS), MPa 240
500
Tensile Strength: Yield (Proof), MPa 130
500

Thermal Properties

Latent Heat of Fusion, J/g 570
410
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
640
Melting Onset (Solidus), °C 580
600
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
42
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 7.6
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
11
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1770
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 25
51
Strength to Weight: Bending, points 33
51
Thermal Diffusivity, mm2/s 52
67
Thermal Shock Resistance, points 11
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.9 to 89
94.4 to 98.4
Chromium (Cr), % 0
0.040 to 0.25
Copper (Cu), % 0 to 1.0
0.2 to 0.7
Iron (Fe), % 0 to 1.3
0 to 0.8
Magnesium (Mg), % 0 to 0.1
0.5 to 1.1
Manganese (Mn), % 0 to 0.35
0.2 to 0.7
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0.7 to 1.5
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.5
0 to 0.3
Residuals, % 0 to 0.25
0 to 0.15