MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. 7129 Aluminum

Both A413.0 aluminum and 7129 Aluminum are aluminum alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 3.5
9.0 to 9.1
Fatigue Strength, MPa 130
150 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 170
250 to 260
Tensile Strength: Ultimate (UTS), MPa 240
430
Tensile Strength: Yield (Proof), MPa 130
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 570
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
630
Melting Onset (Solidus), °C 580
510
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
40
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 7.6
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1050 to 1090
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
47
Strength to Weight: Axial, points 25
41
Strength to Weight: Bending, points 33
43 to 44
Thermal Diffusivity, mm2/s 52
58
Thermal Shock Resistance, points 11
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.9 to 89
91 to 94
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 1.0
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 1.3
0 to 0.3
Magnesium (Mg), % 0 to 0.1
1.3 to 2.0
Manganese (Mn), % 0 to 0.35
0 to 0.1
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0 to 0.15
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
4.2 to 5.2
Residuals, % 0 to 0.25
0 to 0.15