MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. SAE-AISI 8627 Steel

A413.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 8627 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is SAE-AISI 8627 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
150
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
23
Fatigue Strength, MPa 130
230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170
320
Tensile Strength: Ultimate (UTS), MPa 240
500
Tensile Strength: Yield (Proof), MPa 130
330

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
38
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 1040
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
100
Resilience: Unit (Modulus of Resilience), kJ/m3 120
280
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 33
18
Thermal Diffusivity, mm2/s 52
10
Thermal Shock Resistance, points 11
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0.25 to 0.3
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
96.8 to 98
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.7 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 0.5
0.4 to 0.7
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 11 to 13
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0