MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. S40920 Stainless Steel

A413.0 aluminum belongs to the aluminum alloys classification, while S40920 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
150
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
22
Fatigue Strength, MPa 130
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 170
270
Tensile Strength: Ultimate (UTS), MPa 240
430
Tensile Strength: Yield (Proof), MPa 130
190

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 170
710
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.6
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 1040
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
78
Resilience: Unit (Modulus of Resilience), kJ/m3 120
97
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 25
15
Strength to Weight: Bending, points 33
16
Thermal Diffusivity, mm2/s 52
6.9
Thermal Shock Resistance, points 11
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
85.1 to 89.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.15 to 0.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0