MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. AISI 202 Stainless Steel

A535.0 aluminum belongs to the aluminum alloys classification, while AISI 202 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is AISI 202 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 9.0
14 to 45
Fatigue Strength, MPa 95
290 to 330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 250
700 to 980
Tensile Strength: Yield (Proof), MPa 120
310 to 580

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 620
1400
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 9.3
2.8
Embodied Energy, MJ/kg 160
40
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 120
250 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 26
25 to 35
Strength to Weight: Bending, points 33
23 to 29
Thermal Diffusivity, mm2/s 42
4.0
Thermal Shock Resistance, points 11
15 to 21

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
63.5 to 71.5
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
7.5 to 10
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0 to 0.15
0