MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. AISI 316L Stainless Steel

A535.0 aluminum belongs to the aluminum alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 9.0
9.0 to 50
Fatigue Strength, MPa 95
170 to 450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Tensile Strength: Ultimate (UTS), MPa 250
530 to 1160
Tensile Strength: Yield (Proof), MPa 120
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 620
1400
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.3
3.9
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 120
93 to 1880
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 26
19 to 41
Strength to Weight: Bending, points 33
18 to 31
Thermal Diffusivity, mm2/s 42
4.1
Thermal Shock Resistance, points 11
12 to 25

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
62 to 72
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0 to 0.15
0