MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. EN 1.7367 Steel

A535.0 aluminum belongs to the aluminum alloys classification, while EN 1.7367 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is EN 1.7367 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 9.0
18
Fatigue Strength, MPa 95
310
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Tensile Strength: Ultimate (UTS), MPa 250
670
Tensile Strength: Yield (Proof), MPa 120
460

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
26
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 79
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.3
2.6
Embodied Energy, MJ/kg 160
37
Embodied Water, L/kg 1180
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 33
22
Thermal Diffusivity, mm2/s 42
6.9
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
87.3 to 90.3
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.2 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0