MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. EN AC-48100 Aluminum

Both A535.0 aluminum and EN AC-48100 aluminum are aluminum alloys. They have 77% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
76
Elongation at Break, % 9.0
1.1
Fatigue Strength, MPa 95
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
29
Tensile Strength: Ultimate (UTS), MPa 250
240 to 330
Tensile Strength: Yield (Proof), MPa 120
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 390
640
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
580
Melting Onset (Solidus), °C 550
470
Specific Heat Capacity, J/kg-K 910
880
Thermal Conductivity, W/m-K 100
130
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
27
Electrical Conductivity: Equal Weight (Specific), % IACS 79
87

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 9.3
7.3
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1180
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 120
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 26
24 to 33
Strength to Weight: Bending, points 33
31 to 38
Thermal Diffusivity, mm2/s 42
55
Thermal Shock Resistance, points 11
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.4 to 93.4
72.1 to 79.8
Copper (Cu), % 0 to 0.1
4.0 to 5.0
Iron (Fe), % 0 to 0.2
0 to 1.3
Magnesium (Mg), % 6.5 to 7.5
0.25 to 0.65
Manganese (Mn), % 0.1 to 0.25
0 to 0.5
Nickel (Ni), % 0
0 to 0.3
Silicon (Si), % 0 to 0.2
16 to 18
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0 to 0.15
0 to 0.25