MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. S30615 Stainless Steel

A535.0 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 9.0
39
Fatigue Strength, MPa 95
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
75
Tensile Strength: Ultimate (UTS), MPa 250
690
Tensile Strength: Yield (Proof), MPa 120
310

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 620
1370
Melting Onset (Solidus), °C 550
1320
Specific Heat Capacity, J/kg-K 910
500
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 9.3
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 33
23
Thermal Diffusivity, mm2/s 42
3.7
Thermal Shock Resistance, points 11
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.4 to 93.4
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
56.7 to 65.3
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 2.0
Nickel (Ni), % 0
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0 to 0.15
0