MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. S31730 Stainless Steel

A535.0 aluminum belongs to the aluminum alloys classification, while S31730 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is S31730 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 9.0
40
Fatigue Strength, MPa 95
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 250
540
Tensile Strength: Yield (Proof), MPa 120
200

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 910
470
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
24
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 9.3
4.6
Embodied Energy, MJ/kg 160
63
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
170
Resilience: Unit (Modulus of Resilience), kJ/m3 120
99
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 26
19
Strength to Weight: Bending, points 33
18
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.1
4.0 to 5.0
Iron (Fe), % 0 to 0.2
52.4 to 61
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
15 to 16.5
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0 to 0.15
0