MakeItFrom.com
Menu (ESC)

ACI-ASTM CA28MWV Steel vs. EN 1.4525 Stainless Steel

Both ACI-ASTM CA28MWV steel and EN 1.4525 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA28MWV steel and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 11
5.6 to 13
Fatigue Strength, MPa 470
480 to 540
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 1080
1030 to 1250
Tensile Strength: Yield (Proof), MPa 870
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 380
430
Maximum Temperature: Mechanical, °C 740
860
Melting Completion (Liquidus), °C 1470
1430
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
18
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 17
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1920
1820 to 3230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 38
36 to 45
Strength to Weight: Bending, points 30
29 to 33
Thermal Diffusivity, mm2/s 6.6
4.7
Thermal Shock Resistance, points 40
34 to 41

Alloy Composition

Carbon (C), % 0.2 to 0.28
0 to 0.070
Chromium (Cr), % 11 to 12.5
15 to 17
Copper (Cu), % 0
2.5 to 4.0
Iron (Fe), % 81.4 to 85.8
70.4 to 79
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.3
0 to 0.8
Nickel (Ni), % 0.5 to 1.0
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.025
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
0