MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. Titanium 6-6-2

ACI-ASTM CA40 steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 10
6.7 to 9.0
Fatigue Strength, MPa 460
590 to 670
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
44
Tensile Strength: Ultimate (UTS), MPa 910
1140 to 1370
Tensile Strength: Yield (Proof), MPa 860
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 750
310
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1500
1560
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 25
5.5
Thermal Expansion, µm/m-K 10
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
40
Density, g/cm3 7.7
4.8
Embodied Carbon, kg CO2/kg material 2.0
29
Embodied Energy, MJ/kg 28
470
Embodied Water, L/kg 100
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 33
66 to 79
Strength to Weight: Bending, points 27
50 to 57
Thermal Diffusivity, mm2/s 6.7
2.1
Thermal Shock Resistance, points 33
75 to 90

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0.2 to 0.4
0 to 0.050
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.5 to 88.3
0.35 to 1.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
5.0 to 6.0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0
0 to 0.4