MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. C41500 Brass

ACI-ASTM CA40 steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10
2.0 to 42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 910
340 to 560
Tensile Strength: Yield (Proof), MPa 860
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 750
180
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1500
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
30
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 28
45
Embodied Water, L/kg 100
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 33
11 to 18
Strength to Weight: Bending, points 27
12 to 17
Thermal Diffusivity, mm2/s 6.7
37
Thermal Shock Resistance, points 33
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 81.5 to 88.3
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5