MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40 Steel vs. C84100 Brass

ACI-ASTM CA40 steel belongs to the iron alloys classification, while C84100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40 steel and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
65
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 10
13
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 910
230
Tensile Strength: Yield (Proof), MPa 860
81

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 750
160
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1500
810
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
110
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
23
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
25

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
29
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 2.0
2.9
Embodied Energy, MJ/kg 28
48
Embodied Water, L/kg 100
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
24
Resilience: Unit (Modulus of Resilience), kJ/m3 1910
30
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 33
7.4
Strength to Weight: Bending, points 27
9.7
Thermal Diffusivity, mm2/s 6.7
33
Thermal Shock Resistance, points 33
7.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
78 to 85
Iron (Fe), % 81.5 to 88.3
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.5
0 to 0.010
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.5 to 4.5
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5