MakeItFrom.com
Menu (ESC)

ACI-ASTM CA40F Steel vs. C11600 Copper

ACI-ASTM CA40F steel belongs to the iron alloys classification, while C11600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA40F steel and the bottom bar is C11600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 13
2.7 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 770
230 to 410
Tensile Strength: Yield (Proof), MPa 550
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 750
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 27
390
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
100
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
35
Density, g/cm3 7.7
9.0
Embodied Carbon, kg CO2/kg material 2.0
2.7
Embodied Energy, MJ/kg 28
42
Embodied Water, L/kg 100
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
9.7 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 790
25 to 710
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28
7.2 to 13
Strength to Weight: Bending, points 24
9.4 to 14
Thermal Diffusivity, mm2/s 7.2
110
Thermal Shock Resistance, points 28
8.2 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
99.78 to 99.915
Iron (Fe), % 81.6 to 88.3
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Silver (Ag), % 0
0.085 to 0.12
Sulfur (S), % 0.2 to 0.4
0
Residuals, % 0
0 to 0.1