MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. 332.0 Aluminum

ACI-ASTM CA6N steel belongs to the iron alloys classification, while 332.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is 332.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 17
1.0
Fatigue Strength, MPa 640
90
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 1080
250
Tensile Strength: Yield (Proof), MPa 1060
190

Thermal Properties

Latent Heat of Fusion, J/g 280
530
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1440
580
Melting Onset (Solidus), °C 1400
530
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 23
100
Thermal Expansion, µm/m-K 9.9
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
84

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.5
7.8
Embodied Energy, MJ/kg 35
140
Embodied Water, L/kg 110
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 30
31
Thermal Diffusivity, mm2/s 6.1
42
Thermal Shock Resistance, points 40
12

Alloy Composition

Aluminum (Al), % 0
80.1 to 89
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 77.9 to 83.5
0 to 1.2
Magnesium (Mg), % 0
0.5 to 1.5
Manganese (Mn), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 6.0 to 8.0
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
8.5 to 10.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5