MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6N Steel vs. Grade 5 Titanium

ACI-ASTM CA6N steel belongs to the iron alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA6N steel and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
8.6 to 11
Fatigue Strength, MPa 640
530 to 630
Poisson's Ratio 0.28
0.32
Reduction in Area, % 57
21 to 25
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 1080
1000 to 1190
Tensile Strength: Yield (Proof), MPa 1060
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 740
330
Melting Completion (Liquidus), °C 1440
1610
Melting Onset (Solidus), °C 1400
1650
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 23
6.8
Thermal Expansion, µm/m-K 9.9
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 2.5
38
Embodied Energy, MJ/kg 35
610
Embodied Water, L/kg 110
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2900
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 38
62 to 75
Strength to Weight: Bending, points 30
50 to 56
Thermal Diffusivity, mm2/s 6.1
2.7
Thermal Shock Resistance, points 40
76 to 91

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 10.5 to 12.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 77.9 to 83.5
0 to 0.4
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Residuals, % 0
0 to 0.4