MakeItFrom.com
Menu (ESC)

ACI-ASTM CA6NM Steel vs. C11000 Copper

ACI-ASTM CA6NM steel belongs to the iron alloys classification, while C11000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA6NM steel and the bottom bar is C11000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 17
1.5 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Tensile Strength: Ultimate (UTS), MPa 850
220 to 410
Tensile Strength: Yield (Proof), MPa 620
69 to 390

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 770
200
Melting Completion (Liquidus), °C 1450
1080
Melting Onset (Solidus), °C 1400
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
390
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
100
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 34
41
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
6.1 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 1000
21 to 640
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30
6.8 to 13
Strength to Weight: Bending, points 26
9.0 to 14
Thermal Diffusivity, mm2/s 6.7
110
Thermal Shock Resistance, points 31
8.0 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 11.5 to 14
0
Copper (Cu), % 0
99.9 to 100
Iron (Fe), % 78.4 to 84.6
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.4 to 1.0
0
Nickel (Ni), % 3.5 to 4.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.1