MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. 535.0 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while 535.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
70
Elastic (Young's, Tensile) Modulus, GPa 200
67
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 500
270
Tensile Strength: Yield (Proof), MPa 230
140

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 21
100
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
23
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
79

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.3
9.4
Embodied Energy, MJ/kg 33
160
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 18
28
Strength to Weight: Bending, points 18
35
Thermal Diffusivity, mm2/s 5.6
42
Thermal Shock Resistance, points 17
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
0 to 0.050
Iron (Fe), % 72.9 to 82
0 to 0.15
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0 to 1.0
0.1 to 0.25
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15