MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. 771.0 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while 771.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
85 to 120
Elastic (Young's, Tensile) Modulus, GPa 200
70
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 500
250 to 370
Tensile Strength: Yield (Proof), MPa 230
210 to 350

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 940
180
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1380
620
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 21
140 to 150
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
27
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
82

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.3
8.0
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 130
1130

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
310 to 900
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 18
23 to 35
Strength to Weight: Bending, points 18
29 to 39
Thermal Diffusivity, mm2/s 5.6
54 to 58
Thermal Shock Resistance, points 17
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
90.5 to 92.5
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0.060 to 0.2
Copper (Cu), % 0 to 1.2
0 to 0.1
Iron (Fe), % 72.9 to 82
0 to 0.15
Magnesium (Mg), % 0
0.8 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.15
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0
6.5 to 7.5
Residuals, % 0
0 to 0.15