MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. EN 1.4736 Stainless Steel

Both ACI-ASTM CB30 steel and EN 1.4736 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 500
580
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
500
Maximum Temperature: Mechanical, °C 940
1000
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 21
21
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.0
Density, g/cm3 7.7
7.6
Embodied Carbon, kg CO2/kg material 2.3
2.4
Embodied Energy, MJ/kg 33
35
Embodied Water, L/kg 130
140

Common Calculations

PREN (Pitting Resistance) 20
18
Resilience: Unit (Modulus of Resilience), kJ/m3 140
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 5.6
5.6
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
1.7 to 2.1
Carbon (C), % 0 to 0.3
0 to 0.040
Chromium (Cr), % 18 to 21
17 to 18
Copper (Cu), % 0 to 1.2
0
Iron (Fe), % 72.9 to 82
77 to 81.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8