MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. EN 1.4905 Stainless Steel

Both ACI-ASTM CB30 steel and EN 1.4905 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 500
740
Tensile Strength: Yield (Proof), MPa 230
510

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 420
380
Maximum Temperature: Mechanical, °C 940
660
Melting Completion (Liquidus), °C 1430
1480
Melting Onset (Solidus), °C 1380
1440
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
26
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 33
40
Embodied Water, L/kg 130
90

Common Calculations

PREN (Pitting Resistance) 20
15
Resilience: Unit (Modulus of Resilience), kJ/m3 140
680
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
26
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 5.6
7.0
Thermal Shock Resistance, points 17
25

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0 to 0.3
0.090 to 0.13
Chromium (Cr), % 18 to 21
8.5 to 9.5
Copper (Cu), % 0 to 1.2
0
Iron (Fe), % 72.9 to 82
86.2 to 88.8
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 2.0
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.050 to 0.090
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.5
0.1 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25