MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. EN AC-21100 Aluminum

ACI-ASTM CB30 steel belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 200
71
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 500
340 to 350
Tensile Strength: Yield (Proof), MPa 230
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
670
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.3
8.0
Embodied Energy, MJ/kg 33
150
Embodied Water, L/kg 130
1150

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
300 to 400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 18
31 to 33
Strength to Weight: Bending, points 18
36 to 37
Thermal Diffusivity, mm2/s 5.6
48
Thermal Shock Resistance, points 17
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.4 to 95.7
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
4.2 to 5.2
Iron (Fe), % 72.9 to 82
0 to 0.19
Manganese (Mn), % 0 to 1.0
0 to 0.55
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.18
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1