MakeItFrom.com
Menu (ESC)

ACI-ASTM CB30 Steel vs. C43000 Brass

ACI-ASTM CB30 steel belongs to the iron alloys classification, while C43000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CB30 steel and the bottom bar is C43000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 500
320 to 710
Tensile Strength: Yield (Proof), MPa 230
130 to 550

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1380
1000
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 21
120
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
27
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
28

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 33
46
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 140
82 to 1350
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
10 to 23
Strength to Weight: Bending, points 18
12 to 20
Thermal Diffusivity, mm2/s 5.6
36
Thermal Shock Resistance, points 17
11 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 1.2
84 to 87
Iron (Fe), % 72.9 to 82
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.7 to 2.7
Zinc (Zn), % 0
9.7 to 14.3
Residuals, % 0
0 to 0.5